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Abstract—Stochastic optimization can be used to model pre-

dictable but uncertain element failures, in an attempt to enhance 
system reliability in power system operation and planning. In 
practical applications, such as preventive operation during severe 
weather, the uncertainty set is often very large. This will lead to 
two challenges: (i) every possible scenario cannot be practically 
identified; and (ii) the computational demands of stochastic opti-
mization with a large scenario set cannot be met. To address these 
challenges, this paper develops a multidimensional scenario selec-
tion method, which creates a rather small but representative set of 
scenarios. The developed method makes use of failure features as 
well as network features of the elements that may fail, to achieve a 
superior performance. The simulations studies on a synthetic 
large-scale Texas system, show the dominant performance of the 
method compared to existing algorithms in the literature, as well 
as common industry practices. Due to its effectiveness, the method 
presented in this paper enables computationally efficient imple-
mentation of stochastic power system operation and planning soft-
ware tools. Such stochastic tools will improve system reliability 
and efficiency through enhanced use of the existing resources, 
without requiring any expensive system upgrade.  
 

Index Terms—Large-scale systems, load shedding, power out-
age, power system reliability, preventive operation, scenario crea-
tion, scenario reduction, severe weather, stochastic unit commit-
ment, stochastic optimization, transmission outage. 

 

I. INTRODUCTION 
he National Academy of Engineering refers to the North 
American power grid as the largest and most complex ma-
chine ever built by humans [1]. In order to supply the elec-

tric load reliably, numerous decisions should be made at differ-
ent time scales, each of which can change the operating condi-
tions and the cost of grid operation. Such decisions are made 
based on the available information that describes the state of the 
system. With perfect information, system reliability would be 
achieved with ease, through the use of appropriate decision sup-
port systems. In reality, however, power systems are stochastic 
in nature, and there are many sources of uncertainty that affect 
the system in different ways. Failure of decision-makers in ac-
counting for the uncertainties can lead to inefficiencies in oper-

 
 

ation, power outages, and even widespread blackouts in ex-
treme cases. Uncertainties in power systems include but are not 
limited to random human errors, unplanned element failures, 
load forecast error, and renewable generation forecast error. 
The focus of this paper is the uncertainty associated with the 
element failures, when such failures are predictable. Severe 
weather is an example of such events, during which many 
power system elements fail. 

Statistical analysis shows that during the past ten years, 
equipment failure, during predictable extreme weather events, 
has been the leading cause of power outages in the United States 
[2]–[4]. Different studies are focused on evaluating the adverse 
impacts of severe weather on power system reliability, using 
different techniques such as fuzzy systems [5], and fragility 
modeling and impact assessment [6]. While severe weather 
events, such as hurricanes, are predictable in advance, the fore-
casts often involve a large degree of uncertainty. This uncer-
tainty propagates through the element failure estimation models 
that take weather forecast as input. Handling such a large un-
certainty set in power system operation and planning is a chal-
lenging task due to two main reasons: (i) analyzing the uncer-
tainties is often not straightforward and requires complex pro-
cesses; and (ii) operation and planning tools with explicit mod-
eling of uncertainties become extremely computationally de-
manding [7].  This is even more challenging for short-term op-
eration models such as unit commitment and economic dis-
patch, where computational time is extremely scarce. Thus, in-
dustry implementation of operation models does not explicitly 
model many of the uncertainties. Instead, energy and market 
management system software tools, by in large, use a combina-
tion of proxy deterministic rules and engineering judgment for 
uncertainty management [8]–[10]. These methods do not nec-
essarily use the available resources efficiently, and in extreme 
cases, fail to supply the load reliably. 

Over the last two decades, power system research community 
has attempted to improve the modeling of uncertainties. With 
improvements in computer hardware and software, new and 
more efficient software tools for power system operation and 
planning, based on stochastic optimization have been intro-
duced [8], [11], [12]. In short-term operation, stochastic unit 
commitment (SUC) is developed as a scenario-based optimiza-
tion method that explicitly models uncertainties. As a result, the 
solution to SUC is more efficient than that of deterministic UC, 
both in terms of reliability and economic efficiency.  

Despite these anticipated and suitable advantages, imple-
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mentation of SUC is computationally burdensome. Addition-
ally, efficient scenario creation is often a complex and challeng-
ing process. Scenario creation is extremely important as the 
computational complexity of stochastic optimization is typi-
cally a function of the number of scenarios. Hence, modeling 
more scenarios, though may result in an improved solution, will 
increase the computational demand of the model. Furthermore, 
for many realistic problems, modeling of all the possible sce-
narios is an impossible task. Thus, an appropriate scenario cre-
ation method is needed to identify a manageable set of scenarios 
that effectively represents the uncertainty space. It should be 
noted that with any scenario creation method, there will always 
be a trade-off between the number of modeled scenarios and the 
solution quality. Thus, not only is the formulation for the calcu-
lations within each scenario important, but also the methods for 
scenario creation, reduction, and aggregation are critical steps 
in implementation of an effective SUC.  

The purpose of this paper is to enable practical implementa-
tion of SUC, in presence of many predictable but uncertain el-
ement failures. In [13], we have developed a formulation that is 
able to reduce UC computational time by a factor of more than 
90%, in comparison with common academic methods, with 
many simultaneous line failures. This paper develops an en-
hanced algorithm for scenario creation, for the case of many 
uncertain element failures. As shown in the simulation results, 
the two methods together enable practical implementation of 
SUC, with predictable stochastic failures. 

A proper set of scenarios should be able to represent the most 
critical and influential possibilities, within a limited number of 
scenarios. The process of scenario creation can be based on 
complex computational methods or simple human decisions. 
For example, in [14], where the uncertainty of generating units 
is the subject of interest, the first and the second scenarios are 
defined as the outage of the largest and the second-largest gen-
eration units. While this scenario creation method is simple and 
straightforward, it is not efficient in terms of representing all 
the possible futures. There are several mathematical methods 
such as fast forward selection (FFS) [15], [16], simultaneous 
backward reduction method [15], [17], and forward selection in 
recourse clusters (FSRC) [18], which create, reduce, and aggre-
gate scenarios for a general stochastic optimization problem. In 
[19], Monte Carlo method is used to create scenarios, while FFS 
and backward techniques are employed for scenario reduction. 
Authors of [20] combine the two-stage stochastic programming 
with chance-constrained stochastic methods to create a joint 
formulation, which uses Monte Carlo principle and new formu-
lation to solve the unit commitment problem with uncertain 
wind power penetration. Reference [21] reviews some of 
known methods and proposes an algorithm for scenario creation 
and reduction with applications in power management prob-
lems. The algorithm is based on fast forward selection and 
backward reduction when number of scenarios is many but fi-
nite. [19] and [21] both assume that the possibility of each sce-
nario and the distance between the scenarios are both computa-
ble or known. In some cases, however, it is difficult to deter-
mine all possible individual scenarios or their corresponding 
possibilities. This will be a challenge for many existing meth-
ods, which first, create a scenario tree, and, then, use statistical 
data, to reduce the number of scenarios [15], [22]–[24]. As will 

be shown in our simulation studies, the above-mentioned ran-
dom-based methods are not efficient for the application dis-
cussed in this paper. 

A few alternatives have been introduced in the literature. For 
instance, [25] claims that the problem can be simplified by ig-
noring parts of the available information or problem constraints, 
such as transmission flow limits. It is also suggested that com-
bining  SUC with proxy deterministic rules, such as reserve re-
quirements, is an effective way of improving the solution qual-
ity [26]; this way, reserve can compensate for the effect of ne-
glected scenarios. However, it is necessary to determine the ad-
equate level of reserve, which in some ways can be arbitrary. In 
[27], the interval optimization approach is evaluated in compar-
ison with scenario-based stochastic optimization. The study 
concluded that the interval-based method is faster but may find 
a less stable; it is also very sensitive to the uncertainty interval. 
None of the existing methods is efficient enough to solve the 
problem that this paper focuses on: modeling stochastic element 
failures within operation and planning problems. An efficient 
scenario creation method is clearly needed for this problem.  

In this paper, we develop a new analytical multidimensional 
scenario selection (MDSS) algorithm that is able to create a 
user-identified number of scenarios, in presence of many uncer-
tain element failures. The developed method uses different as-
pects of information regarding each uncertainty, to create an ef-
ficient set of scenarios without missing critical available infor-
mation. While there are many applications for the proposed 
method, a predictable substantial disturbance, such as severe 
weather, would be a suitable use case. The benefits of the 
MDSS method is more apparent in problems with large uncer-
tainty sets. Other applications, such as N-k security-constrained 
unit commitment, generation expansion planning, and risk man-
agement analysis can also benefit from the developed tech-
nique. 

The remainder of this paper is organized as follows. Section 
II presents the motivation and contributions of this paper. Sec-
tion III describes the first step of the developed method: uncer-
tainty evaluation and feature selection. The scenario creation 
method is presented in Section IV. Simulation studies are of-
fered in Section V to evaluate the performance and effective-
ness of the developed method. Finally, Section VI concludes 
this paper. 

II. MOTIVATION AND CONTRIBUTION 
To provide a picture of the first challenge in scenario crea-

tion, consider only one possible failure in the network with a 
temporal distribution over the period of operation. For this 
event, many scenarios can be constructed, as shown in Fig. 1.  

 

 
Fig.  1. Possible scenarios for a single element.  
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Black dots represent the case, where the element remains 

online, and gray dots represent failures. It is assumed that a 
failed element cannot be fixed and go back online during the 
same operation period. As the figure suggests, even one sto-
chastic failure can lead to many different scenarios, depending 
on the time when the element fails. 

The same is true for any other element in the network with a 
nonzero failure chance. Hence, the number of different possible 
scenarios, 𝑁𝑆, can be calculated as: 

𝑁𝑆 = (𝑇 + 1))*,  (1) 

where 𝑇 is the number of time steps in the duration of the study, 
and 𝑁, is a number of elements with a nonzero failure chance. 
For a case with only 36 transmission lines with nonzero failure 
probabilities over 24 hours, the total number of possible scenar-
ios is about 2E+50. To understand how big this number is, one 
should notice that the total number of atoms in the earth is esti-
mated to be half of this number. During severe weather events, 
such as hurricanes, a much larger number of transmission ele-
ments can fail, leading to a larger number of possible scenarios. 
There are four main challenges that come with this large num-
ber of possible scenarios. First, it is clearly not possible to eval-
uate every scenario individually. Second, even using random 
methods such as Monte Carlo may show low efficiency as the 
number of randomly evaluated scenarios is extremely limited in 
comparison to the possibilities. Third, it is not practically pos-
sible to calculate the probability of each individual scenario as 
the individual probabilities are all almost zero. Although the 
probabilities are not exactly zero, they will be considered as 
zero within the accuracy of most computer software tools. Fi-
nally, even if it was possible to examine each scenario and its 
possibility, scenario selection based on individual scenario 
probability would not be efficient. This is due to the reason that 
many high probability scenarios can be very similar. For exam-
ple, two scenarios could be exactly the same for the first 23 
hours and only a single line outage difference at the 24th hour. 
In that case, both scenarios represent almost the same condi-
tions and most likely ignoring one would not affect efficiency. 

To address all of these challenges, this paper develops an an-
alytical MDSS method to generate an efficient but small sce-
nario set. The method employs information related to the ele-
ments that are prone to failure to generate a desired number of 
scenarios. The method decomposes the information into ele-
ment level data, such as failure probability, as well as network 
level data, such as criticality, to provide a holistic view of the 
future possibilities. The method presented in this paper is fun-
damentally different from random scenario selection methods, 
such as Monte Carlo simulation, or those based on evaluation 
of every possible scenario.  

III. UNCERTAINTY EVALUATION AND FEATURE 
DECOMPOSITION  

The basic goal of solving SUC, instead of a deterministic unit 
commitment, is to enhance the reliability of the system, while 
minimizing the operation cost. In SUC, each scenario repre-
sents a possible future for the network that can occur due to the 
existence of different uncertainties. Uncertain element failures 
can be represented by a failure probability distribution function, 

often with a temporal distribution.  
The failure distribution, though critical to SUC, does not in-

clude information on the technical characteristics of the element 
that indicate its importance for the network. For example, while 
two generators can have the same value for availability factors, 
most probably the one with higher capacity or cheaper cost, is 
more important to the network. Hence, relying solely on the 
failure probability leads to missing critical information on the 
element’s importance, which reduces the efficiency of the sce-
nario set. An appropriate scenario selection method should take 
all aspects of information regarding each uncertainty into ac-
count. 

In this paper, the numerical description of each attribute of 
information is referred to as a “feature”.  Describing each un-
certainty with several features helps create scenarios based on 
the element’s importance as well as its chance of failure. This 
way, the scenario creation method is flexible and adjustable, so 
the operator can decide the attributes that should be considered 
in scenario creation. 

Without losing the generality of the proposed algorithm, 
here, we define and consider two main features for each uncer-
tainty. These two features include: the network feature and the 
failure feature. Describing each uncertainty with these two fea-
tures are later used as the basic step to create efficient scenarios. 
Note that any other desired feature can be defined and added to 
the algorithm in the same way. In what follows, the procedure 
of determining features for the selected elements are described. 

A. Network Feature 
Network feature or importance factor determines the im-

portance of the element failure to the network. The importance 
of each element is defined based on its overall effect on other 
components of the network, should it fail. This feature can vary 
for different types of elements and should be defined based on 
the objective of SUC and the role of the element. The procedure 
of calculating the network feature for the transmission lines and 
generating units is described below.  

1) Network Feature for Transmission Lines 
Transmission lines transfer energy/power from the generat-

ing units to the loads. Hence, the network feature for the trans- 
mission lines should be defined based on transferring energy 
and its impact on the objective function. There is a number of 
characteristics that can be used to calculate the network feature 
for the transmission lines. For example, nominal thermal capac-
ity, capacity utilization of lines at a specific operation point, the 
physical length of line, or whether it is radial or not. In order to 
make the algorithm general and applicable to any network, we 
suggest using a feature that is independent of the operating 
point and straightforward to calculate, while also considering 
the main characteristics of line.  

Line outage distribution factor (LODF) is a well-known 
method to analyze the effect of line outage on the network. Each 
array of LODF, 𝐿𝑂𝐷𝐹(1,12), determines the fraction of pre-out-
age flow on line 𝑚 that will be transferred to line 𝑚4, should line 
𝑚 fail. Using this definition, each row of the LODF matrix rep-
resents the effect of a line outage on the rest of the lines, which 
fits our needs for defining the network feature. However, there 
are some additional points that are necessary to be addressed in 
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using LODF as the network feature. The sign of LODF can be 
positive or negative, which describes the direction of the flow 
change, relative to the direction that is predefined for each line. 
As the direction of power flow does not matter for our applica-
tion, we consider only the absolute value. Additionally, as the 
LODF is a fraction of the pre-outage flow, it is always between 
-1 and 1, which means the actual capacity of the line is not in-
cluded. Hence, the following equation is used to calculate the 
network feature for each line: 

𝑁𝐹567, = 𝐹567,189 	;𝑎𝑏𝑠(𝐿𝑂𝐷𝐹(567,,5))
?

5@A

, ∀	𝑙𝑖𝑛𝑒	 ∈ 	L (2) 

 
where 𝑁𝐹567, represents the calculated network feature of line, 
𝐹567,189 is the capacity of line as in [28], and 𝐿 is the set of all 
transmission lines.  

It is worth mentioning that using actual flows instead of 
lines’ maximum capacity in (2), may more accurately represent 
the network condition; however, we chose to use line capacity 
for two main reasons. First, using flows that change over time 
leads to scenarios that also change over time. Using line capac-
ities, on the other hand, will lead to generation of time-inde-
pendent scenarios. Note that this is a desirable feature in unit 
commitment, as the flows change over the duration of the prob-
lem and are also dependent on the scenario itself. Second, we 
assume that the transmission network is planned appropriately 
and not overbuilt. Thus, transmission capacity limits should be 
an indication of the line importance and loading during peak 
hours. Thus, line capacity limits should be a good static proxy 
to the variable flows, in the sense of the line importance and 
potential flow.   

2) Network Feature for Generation Units 
Regardless of network constraints, there are two main char-

acteristics for each generating unit that defines its level of utili-
zation: generation capacity and generation cost.  

A generation unit with higher capacity and lower cost is more 
important in operation, when solving the unit commitment 
problem. If 𝐺 is the set of generators with 𝑔 as a generator in-
dex, the network feature of generator 𝑔, 𝑁𝐹K , is defined as: 

𝑁𝐹K = 𝐴
𝑃𝐺K189

𝑀𝑎𝑥P𝑃𝐺K189Q∀	K∈R
− 𝐵

𝐶K189

𝑀𝑎𝑥P𝐶K189Q∀	K∈R
, ∀	𝑔 ∈ G (3) 

where 𝑃𝐺K189 and 𝐶K189 are the capacity and marginal cost of 
generation at maximum capacity, respectively. 𝐴 and 𝐵 are co-
efficient indices by which the weight factors of capacity and 
cost in the final index can be adjusted (𝐴 + 𝐵 = 100%). We 
suggest 𝐴 = 𝐵 = 50% for the cases with limited number of 
outages, when supplying all the loads is possible. 𝐴 > 𝐵 gives 
the reliability of supplying load higher priority than the cost, 
and vice versa. Assuming that the number of failures is large, 
similar to the operation conditions during hurricanes, picking 
𝐴 ≫ 𝐵 would be a wise decision (𝐴 > 90%).  

3) Other Uncertainties 
For other components of the network, a network feature can 

be defined similar to generation and transmission. The rest of 
this paper is applicable to any element, after the network feature 

is defined in an appropriate way.  
B.  Failure Feature 
Failure feature is simply defined as the best value that de- 

scribes the failure probability for an element. The failure prob-
ability can be defined as a function of time, constant number, or 
any other form. For the case of a constant failure rate, the rate 
itself can be used as the failure feature. When the failure prob-
ability has a temporal distribution, the failure feature value de- 
pends on the distribution of the possibility over time. It can be 
defined as the maximum value, average value, value at a spe-
cific time, median, etc. For the case study presented in this pa-
per, we use the maximum failure chance as the failure feature 
for transmission lines and generating units.  

IV.  SCENARIO CREATION METHOD 
The previous section discussed how each element with un-

certain failure probability can be described with multiple fea-
tures. This section explains how those features are used to cre-
ate an efficient scenario set.  

Assume U is an element with uncertain failure probability, 
and it is described with a pair of features as U = (𝑁𝐹]	, 𝑃𝐹]), in 
which 𝑁𝐹] and 𝑃𝐹] are network feature and failure feature re-
lated to U, respectively. It is possible to represent each feature 
as a coordinate in a two-dimensional space. Putting all pairs/un-
certainties in the two-dimensional space creates an uncertainty 
space, as shown in Fig. 2. Using this space, uncertainties are 
automatically sorted based on all features. In Fig. 2, (𝑁𝐹 	,𝑃𝐹 ) 
is the one with the highest importance to the network and also 
the highest failure likelihood; in the same way, (𝑁𝐹1	,𝑃𝐹1) is 
the one with lowest importance and failure possibility. Note that 
in a general case, (𝑁𝐹 	, 𝑃𝐹 ) and (𝑁𝐹1	, 𝑃𝐹1) may not exist, 
as one element may not simultaneously have the maxi-
mum/minimum value for both features. It is also worth men-
tioning that the method presented here is general and can handle 
more than two features. We have chosen two features to enable 
a graphical representation of the method. 

In the next step, multiple thresholds should be considered on 
each axis (feature). This divides the total space into smaller ar-
eas, as shown in Fig. 2.  
 

 
Fig. 2. Multidimensional uncertainty space, and thresholds for each feature.  

As an example, considering five thresholds on the network 
feature, and four thresholds on possibility features, divides the 
original space into 12 bounded small areas (areas below NFT1 
and left of PFT1), and eight unbounded areas (areas above 
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NFT1 or right of PFT1), with total number of 20 areas. Each of 
these areas describes a scenario coverage area and may include 
several combinations of uncertainties. The number of thresh-
olds on each axis is adjustable; considering a larger number of 
thresholds on one axis/feature would give higher priority to that 
feature compared to the others. 

Scenario coverage areas are defined at intersections between 
thresholds of the features and include all the pairs to the right 
and above that intersection. Fig. 3 represents the scenario cov-
erage area for each scenario, using this definition. In Fig. 3, sce-
nario coverage areas are numbered from S1 to S20 with two 
arrows showing the direction of the coverage area for each sce-
nario. As an example, the area that is covered by S4 is shown 
with a solid line U-turn arrow. Similarly, the covered area by 
S11 is shown with a dotted U-turn arrow. Note that S11 not only 
covers the bounded area to the right and above of an intersec-
tion, but also covers one bounded and four unbounded areas.  

 
Fig. 3. Scenarios in the multidimensional space. 

Generally, any scenario should be defined over time, describ-
ing deterministic status for all the elements over the duration of 
the study. To compute the temporal status of the elements for 
each scenario, the temporal raw distributions of element’s char-
acteristics in the scenario coverage area are examined. The ele-
ment is considered to be online as long as all the features are 
below the thresholds, defined by the scenario coverage area. At 
any time if the element surpasses all the thresholds, it will be 
transitioned to faulty.  

As an example, to identify the scenario for S11, the following 
steps are taken. 1) The elements that surpass the two thresholds 
of possibility (PFT2) and network importance (NFT3) for S11 
at any point in time are identified, e.g., (𝑁𝐹 	, 𝑃𝐹 ) and 
(𝑁𝐹_	, 𝑃𝐹_). 2) The temporal failure probability for these ele-
ments is examined over the duration of the study. 3) The status 
of these elements, in the scenario, is assumed to be normal until 
their failure probability exceeds the threshold identified by S11; 
at that moment the element will transition to be faulty and will 
remain offline for the remaining hours in the scenario. Note that 
in this particular example, the network feature does not have a 
temporal distribution. Thus, whether or not the element exceeds 
the network threshold is identified in the first step. 

Other important observations from Fig. 3 are summarized as: 

1. ‘S1, S2, S3, S4’ and ‘S8, S12, S16, S20’ all represent the 
same scenario, which does not include any outage, and 
thus, can be assumed as the best-case scenario. In the con-
text of unit commitment, this scenario represents business 
as usual when none of the uncertainties are modeled. This 
reduces the total number of unique scenarios to 13 for our 
example. If 𝑚 features are used for each uncertainty and 
𝑛A,… , 𝑛1 are the number of thresholds on each feature, 
then the total number of unique scenarios, 𝑁𝑅𝑆, can be cal-
culated as: 

𝑁𝑅𝑆 = 𝑚+b(𝑛1,… ,𝑛𝑚) −;(𝑛1,… , 𝑛𝑚) 
 (4) 

2. ‘S17’ represents the worst-case scenario. In this scenario, 
all the elements with nonzero failure possibility are as-
sumed to fail at some point in time. Typically, in robust 
optimization, this worst-case scenario is considered to ob-
tain a conservative solution.  

3. More important uncertainties (in term of network feature 
or failure feature), will automatically be covered by a larger 
number of scenarios. For example, in Fig. 3, (𝑁𝐹 	,𝑃𝐹 ) is 
covered by all scenarios, except for the best-case scenario.  

4. The values considered as thresholds (PFT1…PFT4, and 
NFT1…NFT4), can represent the risk that the operator is 
willing to accept. In other words, there is no need to divide 
the entire range of each feature into equal spaces between 
thresholds; the operator can decide to consider a larger 
number of thresholds close to high values of each feature 
to reduce the risk, likely with higher generation cost. 

 

The third observation assists in overcoming the challenge 
that calculation of individual scenario probabilities is impossi-
ble. Assigning equal possibilities to each individual scenario, 
will automatically give more weight to the more important un-
certainties, as it will be included in a larger number of scenarios. 

V. USE CASE: SUC DURING HURRICANES 
To demonstrate the performance and efficiency of the devel-

oped algorithm, we use preventive SUC during hurricanes as a 
case study. The results are compared with those obtained by 
other scenario creation methods. To do this, first, we solve a 
preventive day-ahead SUC in the presence of a hurricane by us-
ing different scenario creation methods. Then, the results ob-
tained by each method is tested using Monte Carlo simulations 
to evaluate the expected power outage. It should be mentioned 
that for all the methods, the same set of realizations are used for 
the Monte Carlo analysis. 

Hurricanes damage many elements in a power grid; these 
damages can be predicted in advance with an acceptable level 
of accuracy. The damage forecasts, however, are probabilistic, 
due to the uncertainty in weather forecast and fragility analysis. 
Due to the nature of short-term operation, we assume that if an 
element fails, it will remain offline for the rest of the day.  

A. Preventive SUC Formulation 
While SUC formulation for different applications can be 

found in the literate, such as in [29], [30], a compact form of the 
formulation is presented here. The objective is to minimize the 
cost function: 
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Minimize ∑ {𝜋(f)f ∑ [∑ (𝐶(f,h,K)(𝑥f,h , 𝑢f,h))Kh +
∑ j𝑐(f,h,7)5fl (𝑥f,h , 𝑢f,h)m + ∑ (𝑐(f,h,K)

nK (𝑥f,h , 𝑢f,h))K7 ]}, 
 

 (5) 

where s, t, g and n are the indices for scenario, time, generating 
unit, and bus number, respectively. Moreover,  
𝐶(f,h,K), 𝑐(f,h,7)5fl 	𝑎𝑛𝑑	𝑐(f,h,K)

nK   represent the generation cost, load 
shedding penalty, and over-generation penalty, respectively. 
The generation cost is a function of the output power, no-load 
cost, start-up and shut-down costs related to each unit. Note that 
as the load shedding and over-generation penalties are rather 
large, the objective function is dominated by these penalty com-
ponents. Thus, the SUC will effectively minimize the load shed-
ding and over-generation. The problem includes a number of 
equality and inequality constraints: 

𝑔f,h(𝑥f,h , 𝑢f,h) ≤ 	0,	 (6) 

ℎf,h(𝑥f,h , 𝑢f,h) = 	0, (7) 

where 𝑔f,h includes constraints regarding the thermal capacity 
of transmission lines, up and down ramping limits of generating 
units, minimum down and up times of generation units and gen-
eration maximum and minimum capacities. ℎf,h  covers the 
equality constraints, including load balance, power flow calcu-
lations, and also a set of equations that describes the effect of 
possible line outages on the network operation. The main deci-
sion variables are commitment status and generation dispatch 
for each unit, 𝑥f,h , 	𝑢f,h, that minimize the expected objective 
function value over all scenarios. 
The most important constraint related to uncertainties is the line 
limits as shown in (8): 

−𝐹(1)189 ≤ 𝐹(f,1,h) ≤ 𝐹(1)189, ∀	𝑠,	t,	m	 (8) 
 
where 𝐹189 is the thermal limit of the line, 𝐹 is the line flow, 
and 𝑠,𝑚, 𝑡, are scenario index, the line index and time index, 
respectively. 𝐹(f,1,h) is calculated by considering the nodal in-
jection vector, power transfer distribution factor matrix 
(𝑷𝑻𝑫𝑭) [31], and line outage effect as shown in (9).  The first 
part of the right-hand side of (9) represents the line flow due to 
nodal injections, which includes load, generation, over-genera-
tion as load, and load shedding as a negative load at each bus. 
The second part of (9) takes the impact of line outage into ac-
count. Note that 𝐹𝐶(f,h,n) represents the flow canceling transac-
tion, which is calculated in the way that injecting 𝐹𝐶(f,h,n) to the 
“from” bus of line o, and withdrawing 𝐹𝐶(f,h,n) from the “to” 
bus of line o, has the same effect on the rest of the network as 
the outage of line o. (10) defines a set of equality constraints, 
that will be automatically solved by the optimizer to calculate 
the 𝐹𝐶(f,h,n) for all temporal outages in each scenario that are 
defined by O(f,h).  

𝐹(f,1,h) = (𝑷𝑻𝑫𝑭(1) × 𝑷(f,h))

+; {𝑃𝑇𝐷𝐹(1,|}1(~))n∈(Ä,Å)

− (𝑃𝑇𝐷𝐹(1,hn(~))Ç𝐹𝐶(f,h,n) 

∀	𝑠, 𝑡,𝑚 (9) 

(𝑷𝑻𝑫𝑭(n) × 𝑷(f,h)) − 𝐹𝐶(f,h,n)
+; É𝑃𝑇𝐷𝐹{n,|}1j~2mÇn2∈(Ä,Å)

− (𝑃𝑇𝐷𝐹{n,hnj~2mÇ
Ñ 𝐹𝐶(f,h,n2) = 	0 

∀	𝑠, 𝑡 

∀	𝑜 ∈ O(f,h) 

(10) 

For details on flow canceling transactions, which is an exten-
sion of line outage distribution factors, refer to [29]. The ex-
tended version of the formulation can be found in [13], [31], 
[32]. 

In response to the hurricane damage, the operator’s correc-
tive decisions are limited by two factors: the commitment status 
of generators cannot be changed, and all generation units are 
constrained by their ramping limits. Hence, in order to evaluate 
the results of the developed MDSS method and compare them 
with alternative methods, after the main preventive SUC is 
solved, the commitment variables are fixed; generation levels 
can be changed only within the ramping limits. 

B. Test-Case 
A synthetic grid on the footprint of Texas is used here as the 

test case. The system includes 540 generators, 2,000 buses, and 
3,206 transmission lines [28]. For this test case, in addition to 
electrical characteristics data, the geographical data that repre-
sents the location of each element is used as well. The electrical 
components of the network are shown in Fig.  4 [33]. 

 
Fig.  4. Network element locations and the hurricane path. 

The synthetic hurricane we considered passes through the 
network from North to South and affects the right side of the 
network. As the hurricane travels through the network, it has an 
effective radius, equal to the distance it travels in two hours. 
The hurricane crosses the network in 24 hours. The most de-
structive part of hurricane is assumed to be around the center 
with higher chance of causing equipment failure. Consistent 
with historical data, it is assumed that the hurricane does not 
damage the generators. Fig.  4 shows the network elements and 
the hurricane path. 

VI. SIMULATION STUDY 
As the hurricane gets close to the transmission line (any point 

from the starting bus to the ending bus), the possibility of its 
failure gets higher. The number of lines that can fail due to the 
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hurricane depends on the line structure and the hurricane power. 
For the test case we used, the total number of lines with nonzero 
failure chance is 85. The failure probabilities of those lines are 
bell-shaped functions of time.  

A. Scenario Creation/Reduction 
As preventive SUC is solved for an entire day, 24-hours, and 

the number of elements with failure chance is 85, the number 
of possible scenarios for the future of the network is: 

𝑁𝑆 = (24+ 1)àâ = 6.7	 × 10AAà.  

Clearly, these many scenarios cannot be handled by any ma-
chine. Thus, we use the MDSS method as explained in sections 
III and IV. We further assume that: 

• Maximum failure probability is used as the possibility fea-
ture (PF); 

• Network feature is calculated using (2); 
• The number of thresholds on the PF and NF is chosen to 
be four.  

With the above assumptions, there will be ten scenarios, in-
cluding the best and the worst possible cases and eight scenarios 
in between. While there is no outage in the best possible case, 
there are 1,209 line-hours of outage in the worst case. Clearly, 
the difference between the most optimistic and the most pessi-
mistic future is substantial. Thus, relying only on one extreme, 
would not properly capture the uncertainties and may lead to 
inefficient operation. It should be noted that the computational 
time for the scenario creation method is less than two minutes, 
using MATLAB on a standard personal computer.   

B. Results and Comparison 
As mentioned before, to evaluate the efficiency of the pro-

posed algorithm in creating scenarios, the same preventive unit 
commitment is solved using different approaches. Then, Monte 
Carlo simulations, with a large number of randomly generated 
realizations of future, are used to determine the expected cost 
and lost load over the next day. The standard deviation and av-
erage value converge within the first 20% of realizations. Yet, 
the simulations were continued not only to be confident about 
the average, but also to have an accurate estimation of the max-
imum and minimum bounds of the distribution. In addition to 
MDSS, there are other alternative methods, which can be used 
to solve the problem, including the following five. 
1. Business as Usual: Business-as-usual (BAU) is used to serve 
as a reference, where a deterministic unit commitment is solved 
without any modeling of the hurricane damages, and no reserve. 
The expected value for load shedding (plus over-generation) is 

33 GWhr for BAU. Other calculated statistics for BAU are 
shown in Table 1.  

After implementing the developed MDSS method for sce-
nario creation and solving the preventive SUC with 10 scenar-
ios, the expected value of load shedding is substantially reduced 
to 12.7 GWhr, which is over 62% smaller compared to BAU. 
The complete set of calculated results are shown in Table 1.  
2. Robust Preventive Operation: this approach is defined based 
on a simple case, in which preventive unit commitment is 
solved only for the worst possible case (highest number of lines 
failures). In robust preventive operation, any failure probability 
is modeled as a certain failure. The main advantage of robust 
approach over MDSS is its computational efficiency, as it does 
not include multiple scenarios. Note that weather prediction and 
calculation of failure probabilities are still needed. Another al-
ternative method to detect the critical components that generate 
the worst possible case is introduced in [34]. Results are shown 
in Table 1 and discussed later in this section. 
3. MDSS with Different Number of Scenarios: in the presence 
of computational power or time limits, the number of scenarios 
can be reduced by reducing the number of thresholds on each 
feature in the scenario creation algorithm. While reducing the 
number of scenarios can reduce the computational burden, it 
will likely decrease the effectiveness of the method. In particu-
lar, in the case of one scenario, it can be the same as the robust 
operation method; with two scenarios, it can cover the business 
as usual and robust operation simultaneously. Moreover, to 
show the effect of including a larger number of scenarios, 17 
scenarios are created and used to solve the preventive operation 
problem. The results obtained in this part, are discussed later in 
a discussion on the sensitivity of the solution to the number of 
scenarios. 
4. Engineering Judgment: in the absence of sophisticated soft-
ware tools, system operators have relied on engineering judg-
ment for operation in extreme conditions. One judgment-based 
method that is often used is increasing the available reserves by 
bringing additional generation online. During severe weather 
events, the operators often bring all the generator in the storm 
area online to maximize the reserve margins and reduce the uti-
lization of the transmission network [35]. While this method 
does not require complex computation, it may not be as effec-
tive compared to SUC, both in terms of reliability and economic 
efficiency. Table 1 presents the obtained results. 
5. Fast Forward Selection: this method is described with details 
in [11], and used in stochastic unit commitment as described in 
[19]. For this method, based on the predicted outages, first, a 
set of 1,000 scenarios is created randomly. Then the distance 

TABLE 1. LOAD-SHEDDING, OVER-GENERATION AND OPERATION COST STATISTICS FOR DIFFERENT SCENARIO SELECTION METHODS  

Method ↓
Minimum Lost 

Load+Over Generation 
(MWhr)

Expected (Average) 
Lost Load+Over 

Generation (MWhr)

Maximum Lost 
Load+Over Generation 

(MWhr)

Standard Deviation
(WMhr)

Energy Generation
Cost ($)

BAU 8,570 33,063 70,119 9,365 19,653,410
Engineering Judgment 1,317 15,020 33,940 5,525 26,502,360

Robust Preventive Operation 4,256 16,386 32,054 4,271 17,032,512
MDSS Method with 2 Scenarios 1,641 15,019 31,408 4,543 23,517,023
MDSS Method with 5 Scenarios 1,440 14,199 30,590 4,738 20,965,170

MDSS Method with 10 Scenarios 614 12,689 29,534 4,662 20,988,462
MDSS Method with 17 Scenarios 404 11,940 27,814 4,574 20,930,119
Fast Forward with 10 Scenarios 5,309 32,702 81,885 12,002 20,437,868
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between each pair of scenarios is calculated. Note that the dif-
ference in outage of lines and outage duration is considered as 
the distance in this study. At each iteration, one scenario of the 
pair with minimum distance will be removed from the scenario 
set, and the distances will be recalculated again. Scenario re-
duction will continue to the point that the number of remaining 
scenarios is equal to the desired number. The computational 
time for scenario creation and reduction with fast forward se-
lection is more than what is required by the MDSS method, de-
veloped in this paper. If PTDF and LODF matrices are availa-
ble, which is the case for most operation and planning applica-
tions, the MDSS method would be extremely fast. Calculated 
results can be found in Table 1. 

The comparison between different methods and their capa-
bility in preventing lost load and over-generation during the 
hurricane is shown in Table 1. The maximum and minimum as 
well as the expected value and standard deviation are shown. 
Predictably, BAU operation would lead to the highest level of 
lost load and over-generation. All the other operation methods, 
in one way or the other, take some measures to improve relia-
bility in the presence of the hurricane. A point that should be 
emphasized in  Table 1 is that fast forward selection is not only 
worse than the MDSS method with any number of scenarios, 
but also is worse than robust and engineering judgment in terms 
of expected unserved load and over-generation. Besides, it is 
important to consider that the maximum unserved load for fast 
forward selection is even worse than BAU. The results suggest 
that randomly generated scenarios, even with well-known 
methods, can result in worse outcome than simply doing noth-
ing. 

Among all the alternative methods, robust preventive opera-
tion and engineering judgment led to the lowest expected lost 
load and over-generation. If the objective of considering the 
worst case is to increase the reliability, the results clearly show 
that the goal is not best achieved. In fact, bringing all the gen-
erators online produces a slightly better outcome than robust 
solution.  

Using MDSS with only two scenarios, is better than both ro-
bust preventive operation and engineering judgment. The best 
results are achieved by MDSS with seventeen scenarios. The 
method achieves the lowest expected value as well as the lowest 
maximum and lowest minimum network violations (lost load 
plus over-generation) compared to the other methods. This is 
important as the proposed method is superior over the entire 
distribution of the network violations, not just the expected 
value.  

It is also worth noting that the cost of operation in BAU is 
$19.7 million, while the cost increases to $21.0 million for the 
MDSS method. Using engineering judgment, the cost increases 
to $26.5 million. While engineering judgment is relatively ef-
fective in enhancing the reliability by reducing the unserved 
load, though not as effective as MDSS, the cost of reliability 
enhancement for engineering judgment is five times more than 
that of MDSS. 

Another comparison of the different methods is shown in Fig.  
5. This figure illustrates the probability distribution of network 
violations for three of the best methods. A promising point in 
Fig.  5 is that with MDSS method, the mode of the distribution 
(shown with a dark blue bin in Fig.  5) is much lower than that 

of both robust and engineering judgment. For the proposed 
method, the highest chance for unserved load is a value between 
9,347 to 10,465 MWhr. On the other hand, for the other two 
methods the range between 14,936 to 16,054 MWhr has the 
highest chance.  

Finally, another important factor when deciding to use each 
of the mentioned methods, is the required calculation time. 
Table 2 illustrates the required calculation time, and minimum 
required memory (RAM) for different methods. Note that the 
computation time for SUC highly depends on outages: larger 
number of outages requires more computational time. The 
machine that was used to run different methods has an Intel 
Core i7 – 7700 processor and 64GB of RAM; the optimization 
engine that we used was IBM CPLEX [36]. 

 
Fig.  5. Distribution of network violations for the three best methods 

The engineering judgment needs no unit commitment 
calculation; hence, as Table 2, shows, the required 
computational time and memory are reported as None. 
Generally, more scenarios would lead to longer computational 
time and more memory use. However, as Table 2 shows, with 
the same number of scenarios for MDSS and fast forward 
selection, the computational times are different. This is mainly 
due to the number of modeled outages in the scenarios. While 
in MDSS, the worst case is included with highest number of 
outages, this case is not included in fast forward method as it is 
based on random selection of the scenarios. 
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As Table 2 shows, MDSS similar to other stochastic methods 

is computationally expensive. However, the results presented in 
Table 1 shows that MDSS has a superior performance com-
pared to other methods, including robust operation, as it 
achieves a lower minimum, average (expected), and maximum 
for unserved load plus over-generation. Moreover, according to 
Fig.  5, for any uncertain future, MDSS has a higher chance of 
achieving better performance when minimization of unserved 
load and over-generation is the objective.  

 
TABLE 2.  COMPUTATIONAL TIME AND MINIMUM REQUIRED MEMORY FOR 

DIFFERENT METHODS 

 
 

C. Sensitivity to Number of Scenarios 
In order to evaluate the sensitivity of results to the number of 

created scenarios, we solved the same case by using a different 
number of scenarios from 2 to 17 scenarios (see Table 1). We 
observed that by increasing the number of scenarios, enhance-
ment can be achieved on minimum, average and maximum val-
ues. The computational time, however, will increase as more 
scenarios are modeled within the SUC. The computational time 
that we achieved in our simulations was around 20 hours for the 
case with 17 scenarios, 15 hours for the case with 10 scenarios, 
and 10 hours for the case with 5 scenarios. While the computa-
tional time seems reasonable, given the size of the test system, 
further improvements can be achieved through the professional 
development of the SUC model. While the number of modeled 
scenarios should be determined based on the required quality of 
solution and acceptable computation time, for day-ahead unit 
commitment and large-scale networks, the number of recom-
mended scenarios is between 8 to 20. Note that the temporal 
distribution of uncertainties can be used to determine the num-
ber of scenarios as well. Fast and short-lasting events, such as a 
strong hurricane that weakens quickly after landfall, require 
fewer number of scenarios. Slower and long-lasting events, 
such as a hurricane that maintains strong wind speeds after 
landfall or makes multiple landfalls, need more scenarios to be 
properly represented. 

  

D. Scenario Generation Quality Assessment 
The quality of stochastic optimization is directly linked to the 

quality of the scenario set. It is possible to evaluate the quality 
of the scenario set through, first, solving the stochastic optimi-
zation problem, and, then calculating the expected value of the 
objective function, using a larger sample of the uncertainty set. 
This, however, can often be very computationally demanding. 
Hence, it is desirable to evaluate the quality of the generated 
scenarios, before using them to solve the problem. Note that as 

long as the scenario set results in quality decisions, the distribu-
tion of the generated scenarios in the uncertainty space does not 
matter. In other words, an unbiased statistical sample of the un-
certainty set does not necessarily result in a quality scenario set 
that performs well in stochastic optimization [37]. 

For some problems with uncertainty, it is possible to evaluate 
the quality of the scenarios through the statistical characteristics 
of the observation data. Such method is used in [38], [39] for 
assessing wind power scenarios. However, for the problem dis-
cussed in this paper, there is often not enough historical data, 
and it is computationally difficult so simulate a large number of 
scenarios to compare with one another. Thus, none of the men-
tioned methods are suitable for the type of problems discussed 
in this paper. 

In [40], the author proposes a new way of evaluating the sce-
nario generation quality with application to stochastic unit com-
mitment, which seems appropriate for MDSS quality assess-
ment. To use the method, the unit commitment problem is 
solved with each of the scenarios as a deterministic unit com-
mitment. Then, the commitment variables are fixed and the eco-
nomic dispatch variables are solved for, when the network con-
figuration is determined by other scenarios. For a 10-scenario 
set, 10 unit-commitment problems are solved. Each commit-
ment solution is passed to 10 economic dispatch models, result-
ing in a total of 100 events. According to [40] a ranking histo-
gram can be produced to determine the distribution of errors 
(over generation plus unserved load) between results of differ-
ent cases with respect to each other. The shape of the distribu-
tion can, then, be used to assess the scenario generation quality.  

Here, in addition to what is claimed to be a good metric for 
quality of scenarios in [40], we investigate two other features 
that seem suitable for the purpose of this study. Thus, three fac-
tors are used in this paper to evaluate the quality of scenario 
generation. First, we look at the distribution of different scenar-
ios in the uncertainty space. Then, through running determinis-
tic optimizations as explained in [40], a set of objective function 
values are calculated. These values are used to evaluate two 
other metrics. For the second metric, an initial value of expected 
cost, which is dominated by unserved load and over-generation, 
is calculated through averaging the calculated values for each 
scenario creation method. A histogram of the results is used as 
the third metric, as described in [40].  

Note that the entire computation time for each scenario 
method would be less than an hour, which is relatively shorter 
in comparison with the Monte Carlo simulations, which were 
used as the main performance evaluation method. Fig.  6 illus-
trates the covered outages in different scenarios for the two 
main scenario generation methods. As the figure suggests, 
while scenarios that are generated by MDSS are distributed 
from minimum outage (zero outage) to maximum outage, fast 
forward selection failed to achieve the same distribution. Thus, 
MDSS samples a wider range of possibilities. In terms of initial 
value of the objective function, MDSS results in 4.8 GWhr of 
unserved load and over generation, and fast forward selection 
results in 11.3 GWhr, showing a better expected quality for 
MDSS. This was shown before in Table 1. Finally, Fig.  7 shows 
the distribution of results in the value of unserved load plus 
over-generation as a scatter plot (top), and the histogram of the 

Method ↓ Computational Time 
(minutes)

Minimum Required 
Memory (GByte)

BAU 16 > 1.5
Engineering Judgment None None

Robust Preventive Operation 78 > 11
MDSS Method with 2 Scenarios 429 > 16
MDSS Method with 5 Scenarios 579 > 16

MDSS Method with 10 Scenarios 882 > 24
MDSS Method with 17 Scenarios 1,206 > 32
Fast Forward with 10 Scenarios 620 > 18
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objective values (bottom) in deterministic solutions, as sug-
gested by [38]. According to [40], while the histogram of results 
corresponding to fast forward selection shows a non-reliable 
and low quality scenario set, due to its wider distribution, the 
histogram related to MDSS represents a reliable and high qual-
ity scenario set.  

 

 
Fig.  6. Covered outages in different scenarios for MDSS and fast forward se-
lection methods. 

 
Fig.  7.  Scatter plot (top) and histogram (bottom) of results for quality assess-
ment of MDSS and fast forward selection methods. 

VII. CONCLUSION 

Existing industry practices rely on proxy deterministic rules 
as well as engineering judgment to achieve reliability in face of 
uncertainties. Decades of research and development show that 
stochastic optimization can enhance uncertainty management 
and achieve improved reliability and system efficiency. The 
main challenge for adoption of stochastic models remains to be 

their computational burden. This paper focuses on the case of 
predictable but uncertain element failures. In practical applica-
tions, such as preventive operation during severe weather, the 
uncertainty set associated to element failures is rather large. Not 
only is it impossible to solve a stochastic optimization problem 
with such a large uncertainty set, but also the identification of 
all the possible scenarios is impractical. This paper develops an 
effective scenario selection method to address these challenges. 
The method, makes use of both the failure feature as well as the 
network feature to effectively identify a small but representa-
tive set of scenarios. To show the effectiveness of the method, 
it was used to implement a preventive stochastic unit commit-
ment model during hurricanes. The method was, then, com-
pared to alternative scenario selection methods as well as indus-
try practices. The simulation results clearly show that the devel-
oped method is superior to its alternatives in terms of perfor-
mance. As the final scenario set is small, the developed method 
will enable practical implementation of stochastic power sys-
tem operation and planning software tools. These tools will im-
prove uncertainty management, which will lead to enhanced re-
liability without requiring expensive system hardening. 
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